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Numbers.

• In this course we start with the natural numbers

N := {1,2,3, · · · },

or
N0 := {0,1,2,3, · · · }.

If we subtract two of these numbers, we find that for instance

4 − 5 = −1 /∈ N0.

• So people invented the integers

Z := {· · · ,−2,−1,0,1,2, · · · }.

If we divide two of these numbers, we find that for instance

4
5
= 0,8 /∈ Z.
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1.3

Numbers.

• So people created the rational numbers

Q =
{p

q
: p,q ∈ Z,q ̸= 0

}
.

Somebody had the idea to compute
√

2 and realized that
√

2 = 1,4142 · · · /∈ Q.

• So people filled the gap between any two rational numbers and
stated so the real numbers denoted by

R = Q ∪ {· · · ,
√

2, · · · ,e, · · · , π, · · · }.
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1.4

Defintion (Functions).

Let A and B be non-empty sets. If every element x ∈ A is assigned
exactly with one element y = f (x) ∈ B, then f is called a function or a
mapping from A to B.

We write

f : A → B, x 7→ f (x).

• A is the domain and B the codomain of f .
• The element x is called variable or argument and f (x) is the

function value.

Remark.

Other notations for the variables are often used:
• t 7→ f (t),
• u 7→ f (u),
• etc
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1.5

Examples.

• Let A := {x} and B := {y1, y2}. Then f : A → B with

f (x) = y1 and f (x) = y2

is not a function.

• Let A := {x1, x2} and B := {y}. Then f : A → B with

f (x1) = f (x2) = y

is a function.

• The mapping
f : A → A, x 7→ f (x) = x

for all x ∈ A is called the identity on A.
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Definition.

Let f : A → B be a function. The set

Gf = {(x , y) : y = f (x), x ∈ A}

is called graph of f .

The set
f (A) = {y ∈ B : y = f (x), x ∈ A}

is called image of A under f .

The domain of f is often denoted by Df .

Note that the image is always a subset of the codomain.
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Example.

Consider the n-th root function f : [0,∞) → R given by

f (x) := n
√

x for all x ≥ 0, n ∈ N fixed.

x

y

x

1

1
x

3

Df = [0,+∞) = f (Df )
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Example.

Consider f : R → R given by

f (x) := 1
1−x2 .

x

y

1

1-1

Df = R \ {−1,1}, f (Df ) = R \ [0,1)
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Example.

Consider the absolut value function f : R → R given by

f (x) := |x | for all x ∈ R.

x

y

1

1

Df = R, f (Df ) = [0,+∞).
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In general we have

Definition.

For x ∈ R the expression

|x | :=
{

x : x ≥ 0,
−x : x < 0,

is called the absolut value of x .

Usefull inequality

|x | ≤ c ⇐⇒ −c ≤ x ≤ c.
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Example.

Find all x ∈ R which solve the inequality

|x − 5| < 4.

Solution:

|x − 5| < 4 ⇔ −4 < x − 5 < 4 ⇐⇒ 1 < x < 9.
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In general we have

Remark.

The real solutions of the equation xn = a are

a ≥ 0 : x =

{
± n
√

a : n = 2k (n even),
n
√

a : n = 2k + 1 (n odd).

a < 0 : x =

{
not exists : n = 2k (n even),

− n
√
|a| : n = 2k + 1 (n odd),

for k ∈ N.

Remark.

We can write
a1/n = n

√
a.
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Remark.

One has to be careful when using the notation a1/n = n
√

a because,
for example,

3
√
−8 = −2,

but
3
√
−8 = (−8)

1
3 = (−8)

2
6 = ((−8)2)

1
6 = 64

1
6 = 2.

It is safer to write
− 3
√

| − 8| = − 3
√

8 = −2.

Note.

The number under any root has to be positive!
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Example.

Which x ∈ R satisfy 2 3
√

x − 1 < 3
√

x + 13 ?

Solution: The roots are defined for any x ∈ R. Thus we get

(2 3
√

x − 1)3 < (
3
√

x + 13)3 ⇔ 8(x − 1) < x + 13 ⇔ x < 3.

Together we have
x < 3.

A test confirms our solution. Never forget the test, especially if you
raise even powers! Why?
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Definition.

If f and g are two functions with common domain A, we can define

• f ± g : A → R, x 7→ f (x)± g(x),

• f · g : A → R, x 7→ f (x)g(x),

• f
g : A → R, x 7→ f (x)

g(x) for all x with g(x) ̸= 0.
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Example.

Let a0,a1, . . . ,an ∈ R and b0,b1, . . . ,bm ∈ R be fixed numbers. Pn and
Qm are polynomials of degree n and m, respectively.
The rational function h : R → R given by

h(x) :=
Pn(x)
Qm(x)

=
anxn + an−1xn−1 + · · ·+ a1x + a0

bmxm + bm−1xm−1 + · · ·+ b1x + b0
.

can be badly defined.

The domain of the function defined by the previous expression is

Dh := {x ∈ R : Qm(x) ̸= 0}.
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Some properties of functions.

Definition.

• Let f : A → B with A,B ⊂ R. The function f increases
monotonically, if

x < x ′ =⇒ f (x) ≤ f (x ′).

• f increases strictly monotonically, if

x < x ′ =⇒ f (x) < f (x ′).

• f decreases monotonically or decreases strictly monotonically, if

x < x ′ =⇒ f (x) ≥ f (x ′) or f (x) > f (x ′), respectively.
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Examples.

• The function f : R → R given by f (x) = x2 is neither increasing
nor decreasing.

• The function f : R → R given by f (x) = ex is strictly monot.
increasing.

• The function f : R → R given by f (x) = e−x is strictly monot.
decreasing.

But the following restrictions result in
• The function f : [0,+∞) → R given by f (x) = x2 is strictly monot.

increasing.
• The function f : (−∞,0] → R given by f (x) = x2 is strictly monot.

decreasing.

Note: Monotonicity depends on the domain.
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Definition.

The function f : A → R is called bounded, if there exists a
nonnegative real number M ∈ R such that

|f (x)| ≤ M for all x ∈ A

Examples

• The mapping f : R → R given by f = sin(x) is bounded with
M = 1.

• The mapping f : R → R given by f = x2 is not bounded.

• The mapping f : [−2,2] → R given by f = x2 is bounded with
M = 4.

Note: Boundedness depends on the domain of the function f .
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Inverse function

Definition.

Let f : A → B be a function. Then f is said to be invertible, if there
exists for every y ∈ B exactly one x ∈ A with y = f (x). The function

f−1 : B → A, y 7→ f−1(y), f−1(y) = x

is called inverse function of f .
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Examples

• The function f : R → R given by f (x) = 3x + 2 is invertible:

f−1(x) =
1
3
(x − 2).

• The function f : R → R given by f (x) = ex is invertible:

f−1(x) = ln(x).

We check the first example:

y = 3x + 2 ⇔ x =
1
3
(y − 2) =: f−1(y).

We switch the variables to get

f−1(x) =
1
3
(x − 2).
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Examples

• The function f : R → [0,+∞) given by f (x) = x2 is not invertible,
since for instance

f (−2) = 4 = f (2).

• The function f : [0,+∞) → [0,+∞) given by f (x) = x2 is
invertible:

f−1 : [0,+∞) → [0,+∞) with f−1(x) =
√

x .

• The function f : (−∞,0] → [0,+∞) given by f (x) = x2 is
invertible:

f−1 : [0,+∞) → (−∞,0] with f−1(x) = −
√

x .
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In general we have for even powers n := 2m:

f(x)

x

x
n

, n=2m

-1 n
f- (x)=    x

-1 n
f+ (x)=   x

-

Inverses of f(x) := x2m,m ∈ N

What about odd powers?
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Remark.

It is easy to obtain the graph of the inverse function f−1 from the
graph of f . By interchanging the variables x and y , as we did in the
example above, we reflect the graph at the bisector y = x .

f(x) xx

x

y y=x

f

f
-1

f
-1
(f(x))

Reflection across y = x
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Remark.

A function f is invertible, if and only if it is either strictly monot.
increasing or strictly monot. decreasing.

If this is not the case over the whole domain, we determine a partial
inverse by restricting the domain.
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Definition.

Let X ,Y ,Z be nonempty sets with x ∈ X , y ∈ Y und z ∈ Z . We
consider the functions

f : X → Y and g : Y → Z .

Then the mapping

(g ◦ f ) : X → Z given by (g ◦ f )(x) := g(f (x)) = g(y) = z

is called the composition of f and g.



T. Oertel

1.27

X Y Z

f g

g  f

Composition of f and g

We have the relation

f
(
f−1(y)

)
= y and f−1

(
f (x)

)
= x .
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Example.

Let
• f : R → [1,∞) given by f (x) = x2 + 1,
• g : [1,∞) → [1,∞) given by g(y) =

√
y .

Then we compose f and g as

(g ◦ f ) : R → [1,∞) with g(f (x)) = g(x2 + 1) =
√

x2 + 1.

• We could also consider

g : [0,∞) → [0,∞) given by g(y) =
√

y .

Since in this case [1,∞) ⊂ [0,∞), the composition also works.
Check it!

• What about (f ◦ g)?
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Functions in n variables

Definition.

Functions in n variables are of the form

f : Rn → R, u = f (x1, x2, . . . , xn)

with domain Df ⊂ Rn and codomain u ∈ R.

We often write
u = f (x , y) or u = f (x , y , z),

if f depends only on a few variables.

Remark.

We call
(x1, x2, . . . , xn) ∈ Rn

an ordered n-tuple.
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Only in the case of Df ⊂ R2 we are able to represent

u = f (x , y), (x , y) ∈ Df ,

graphically as a surface in R3.

Definition.

The graph

Gf := {(x , y ,u) ∈ R3 : u = f (x , y), (x , y) ∈ Df}

of a function f in two variables is called surface in R3.
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Example: Surface of a cone

The domain given by

Df := {(x , y) ∈ R2 : 0 ≤ x2 + y2 ≤ R2}

is the circle with radius R. The cone is

u = f (x , y) :=
√

x2 + y2 .

f(x,y)

x R

RD(f)

y
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Example: Surface of a hemisphere

The domain given by

Df := {(x , y) ∈ R2 : 0 ≤ x2 + y2 ≤ R2}

is the circle with radius R. The hemisphere is

u = f (x , y) :=
√

R2 − (x2 + y2) .

f(x,y)

x

y

R

R

D(f)
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Definition.

Let h ∈ R be a given number. For u = f (x , y) with (x , y) ∈ Df ⊂ R2 we
call

Γh := {(x , y) ∈ Df : f (x , y) = h}

the level curves of f .
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Level lines for the surface of the cone

The level lines of the cone are the lines√
x2 + y2 = h = const , h ≥ 0,

which are concentric circles with radius h around the origin 0.

h=1

x1

y

h= 4
1

h=0

h= 2
1
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1.35

We are not able to visualze functions f : Rn → R in the case of n ≥ 3,
since the graph is a subset of Rn+1.

In the case of n = 3 however we can state

Definition.

Let h ∈ R be a given number. For u = f (x , y , z) with
(x , y , z) ∈ Df ⊂ R3 we call

Fh := {(x , y , z) ∈ Df : f (x , y , z) = h}, h ∈ R,

the level surfaces of f .
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Example

The level surfaces of the function

f (x , y , z) := x2 + y2 − 2z

are the paraboloids

2z + h = x2 + y2, h = const,

which rotate around the z–axis.
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